LOYOLA COLLEGE (AUTONOMOUS) CHENNAI 600 034

M. Sc DEGREE EXAMINATION – Mathematics

First Semester – November 2013

MT 1816 – Real Analysis Ma

Max: 100 Marks

Time: Forenoon/Afternoon

Date:

Answer ALL Questions. All question carry equal marks.

a) (i) If f is Riemann integrable on [a, b] and F(x) = ^x_a f(t)dt, for a ≤ x ≤ b, then prove that F is continuous on [a, b]. Further if f is continuous at x₀, where x₀∈[a,b], then prove that F is differentiable and F'(x₀)=f(x₀).

OR

- (ii) If f_1 (α) and $f_2 \in (\alpha)$ on $[\alpha, b]$, then prove that $f_1 + f_2$ (α). (5)
- b) (i) Prove that f ∈ ℜ(α) on [a, b] if and only if for every ε >0, there exists a partition
 P such that U(P, f, α) L(P, f, α) < ε.
 - (ii) If f is monotonic on [a, b] and if α is continuous on [a, b], then prove that $f \in (\alpha)$. (8+7)

OR

(iii) Assume α increases monotonically and $\alpha' \in \mathbb{R}$ on [a, b]. Let f be a bounded real function on [a,b]. Then prove that $f \in \mathbb{N}(\alpha)$ if and only if $f\alpha' \in \mathbb{N}$. In that case $\int_{a}^{b} f d\alpha = \int_{a}^{b} f(x)\alpha'(x)dx$.

(iv) State and prove the fundamental theorem of calculus. (9+6)

2. (a) (i) Let α be monotonically increasing on [a,b], then $f_n \varepsilon_{\square}(\alpha)$ on [a,b], for n = 1, 2, 3, ... and suppose $f_n \to f$ on [a,b]. Then prove that $f \varepsilon_{\square}(\alpha)$ on [a,b] and $\int_a^b f d\alpha = \lim_{n \to \infty} \int_a^b f_n d\alpha$. (5)

OR

(ii) Illustrate with an example that the limit of the integral need not be equal to the integral of the limit.(5)

(P.T.O)

- (b) (i) Suppose {f_n} is a sequence of functions, differentiable on [a,b] and such that {f_n(x₀)} converges for some point x₀ on [a,b]. If {f¹_n} converges uniformly on [a,b], then prove that {f_n} converges uniformly on [a,b], to a function f ,and f¹(x) = lim_{n∈0} f¹_n(x)(a ≤ x ≤ b).
 - (ii) Prove that the sequence of functions {f_n} defined on E, converges uniformly on E if and only if for every ε > 0 there exists an integer N such that m ≥ N, n ≥ N, xεE implies |f_n(x) f(x)| ≤ ε.

OR

- (iii) State and prove Stone- Weierstrass theorem. (15)
- 3 a) (i) Let = {φ₀, φ₁, φ₂,...} be orthogramal on I and assume that f ∈ L²(I). Define two sequences of functions {s_n} and {t_n} on I as follows: s_n(x) = Σ^x_{k=0} c_kφ_k(x), t_n(x) = Σ^x_{k=0} b_kφ_k(x) where c_k = (f, φ_k(x) for k = 0, 1, 2... and b₀, b₁, b₂ ... are arbitrary complex numbers. Then for each n, prove that f s_n|| ≤ |f t_n||.

OR

- (ii) State and prove Parseval's formula.
- b) (i) State and prove Riesz-Fischer theorem.

(ii) Prove that for each real β and $f \in L(I)$, $\lim_{\alpha \to \infty} \int_{I} f(t) \sin(\alpha t + \beta) dt = 0$. (9+6)

(5)

OR

- (iii) If g is of bounded variation on $[0, \delta]$, then prove that $\lim_{\alpha \to \infty} \frac{2}{\pi} \int_0^{\delta} g(t) \frac{\sin \alpha t}{t} dt = g(0+).$
- (iv) Assume that $f \in L[0,2\pi]$ and suppose that f is periodic with period 2π . Let $\{s_n\}$ denote the sequence of partial sums of the Fourier series generated by f, $s_n(x) = \frac{a_0}{2} + \sum_{k=0}^{\infty} (a_k coskx + (b_k sinkx))$, n=1,2,... Then prove that $s_n(x) = \frac{2}{\pi} \int_0^{\pi} \frac{f(x+t)+f(x-t)}{2} D_n(t) dt$ where D_n is called Dirichlet's Kernel. (8+7)
- 4. a) (i) If A, $B \in L(\mathbb{R}^n, \mathbb{R}^m)$ and c is a scalar, then prove that, $A + B \parallel \leq A \parallel + B \parallel$ and $cA \parallel = |c| \parallel A \parallel$.

OR

(ii) State and prove the fixed point theorem for a complete metric space. (5)

b) (i) State and prove the inverse function theorem.

OR

- (ii) State and prove the implicit function theorem. (15)
- 5.(a)(i) Graph the circle given $byx^2 + y^2 = 1$. Using the graphical approach, determine parts of the graph that have inverses and algebraic approach, find invertible formulas and cases converting x to y.

OR

- (ii) Suppose that a cup of tea starts out at 98°C and that the conference room you are in is at a temperature of 72°C and suppose that after three minutes, the tea temperature has dropped to 90°C. The conference session is to go on for some time. How long will it take for tea to cool down to 80°C? (5)
- (b) (i) Derive D' Alembert's approach toward characterizing solutions of the vibrating string

OR

(ii)Derive the heat equation.

(15)
