LOYOLA COLLEGE (AUTONOMOUS) CHENNAI 600034

M. Sc DEGREE EXAMINATION - Mathematics

First Semester - November 2013

MT 1816 - Real Analysis Max: 100 Marks
Time: Forenoon/Afternoon
Date:
Answer ALL Questions. All question carry equal marks.

1. a) (i) If f is Riemann integrable on $[\mathrm{a}, \mathrm{b}]$ and $F(x)=\int_{a}^{x} f(t) d t$, for $a \leq x \leq b$, then prove that F is continuous on $[\mathrm{a}, \mathrm{b}]$. Further if f is continuous at x_{0}, where $\mathrm{x}_{0} \in[\mathrm{a}, \mathrm{b}]$, then prove that F is differentiable and $\mathrm{F}^{\prime}\left(\mathrm{x}_{0}\right)=\mathrm{f}\left(\mathrm{x}_{0}\right)$.

OR
(ii) If $\mathrm{f}_{1} \in \mathfrak{R}(\alpha)$ and $\mathrm{f}_{2} \in \mathfrak{R}(\alpha)$ on $[a, b]$, then prove that $\mathrm{f}_{1}+\mathrm{f}_{2} \in \mathfrak{R}(\alpha)$.
b) (i) Prove that $f \in \Re(\alpha)$ on [a, b] if and only if for every $\epsilon>0$, there exists a partition \mathbf{P} such that $U(P, f, \alpha)-L(P, f, \alpha)<\epsilon$.
(ii) If f is monotonic on $[\mathrm{a}, \mathrm{b}]$ and if α is continuous on $[\mathrm{a}, \mathrm{b}]$, then prove that $f \in$ $\mathfrak{R}(\alpha)$.

OR

(iii) Assume α increases monotonically and $\alpha^{\prime} \in \mathfrak{R}$ on [a, b]. Let f be a bounded real function on $[\mathrm{a}, \mathrm{b}]$. Then prove that $f \in \mathfrak{R}(\alpha)$ if and only if $f \alpha^{\prime} \in \mathfrak{R}$. In that case $\int_{a}^{b} f d \alpha=\int_{a}^{b} f(x) \alpha^{\prime}(x) d x$.
(iv) State and prove the fundamental theorem of calculus.
2. (a) (i) Let α be monotonically increasing on $[a, b]$, then $f_{n} \varepsilon \sqcup(\alpha)$ on $[a, b]$, for $n=1,2,3, \ldots$ and suppose $f_{n} \rightarrow f$ on $[a, b]$. Then prove that $f \varepsilon \in(\alpha)$ on $[a, b]$ and $\int_{a}^{b} f d \alpha=\lim _{n \rightarrow \infty} \int_{a}^{b} f_{n} d \alpha$.

OR

(ii) Illustrate with an example that the limit of the integral need not be equal to the integral of the limit.
(b) (i) Suppose $\left\{f_{n}\right\}$ is a sequence of functions, differentiable on $[a, b]$ and such that $\left\{f_{n}\left(x_{0}\right)\right\}$ converges for some point x_{0} on $[a, b]$. If $\left\{f^{1}{ }_{n}\right\}$ converges uniformly on $[a, b]$, then prove that $\left\{f_{n}\right\}$ converges uniformly on $[a, b]$, to a function f, and $f^{1}(x)=\lim _{n \rightarrow \infty} f^{1}(x)(a \leq x \leq b)$.
(ii) Prove that the sequence of functions $\left\{f_{n}\right\}$ defined on E , converges uniformly on E if and only if for every $\varepsilon>0$ there exists an integer N such that $m \geq N, n \geq N, x \varepsilon E$ implies $\left|f_{n}(x)-f(x)\right| \leq \varepsilon$.

OR

(iii) State and prove Stone- Weierstrass theorem.

3 a) (i) Let $=\left\{\varphi_{0}, \varphi_{1}, \varphi_{2}, \ldots\right\}$ be orthnormal on I and assume that $f \in L^{2}(I)$. Define two sequences of functions $\left\{s_{n}\right\}$ and $\left\{t_{n}\right\}$ on I as follows: $s_{n}(x)=$ $\sum_{k=0}^{\infty} c_{k} \varphi_{k}(x), t_{n}(x)=\sum_{k=0}^{\infty} b_{k} \varphi_{k}(x)$ where $c_{k}=\left(f, \varphi_{k}(x)\right.$ for $\mathrm{k}=0,1,2 \ldots$ and $\mathrm{b}_{0}, \mathrm{~b}_{1}, \mathrm{~b}_{2} \ldots$ are arbitrary complex numbers. Then for each n , prove that $\| f-$ $s_{n}\left\|\leq \mid f-t_{n}\right\|$.

OR

(ii) State and prove Parseval's formula.
b) (i) State and prove Riesz-Fischer theorem.
(ii) Prove that for each real β and $\mathrm{f} \in \mathrm{L}(\mathrm{I}), \lim _{\alpha \rightarrow \infty} \int_{l} f(t) \sin (\alpha t+\beta) d t=0$. $(9+6)$

OR
(iii) If g is of bounded variation on $[0, \delta]$, then prove thatl $\operatorname{im}_{\alpha \rightarrow \infty} \frac{2}{\pi} \int_{0}^{\delta} g(t) \frac{\sin \alpha t}{t} d t=g(0+)$.
(iv) Assume that $f \in L[0,2 \pi]$ and suppose that f is periodic with period 2π. Let $\left\{s_{n}\right\}$ denote the sequence of partial sums of the Fourier series generated by f, $s_{n}(x)=$ $\frac{a_{0}}{2}+\sum_{-k=0}^{\infty}\left(a_{k} \cos k x+\left(b_{k} \sin k x\right) \quad, \quad \mathrm{n}=1,2, \ldots\right.$ Then prove that $s_{n}(x)=$ $\frac{2}{\pi} \int_{0}^{\pi} \frac{f(x+t)+f(x-t)}{2} D_{n}(t) d t$ where D_{n} is called Dirichlet's Kernel.
4. a) (i) If $\mathrm{A}, \mathrm{B} \in \mathrm{L}\left(\mathrm{R}^{\mathrm{n}}, \mathrm{R}^{\mathrm{m}}\right)$ and c is a scalar, then prove that, $\|A+B\| \leq\|A\|+\mid B \|$ and $\|c A\|=|c|\|A\|$.

OR

(ii) State and prove the fixed point theorem for a complete metric space.
b) (i) State and prove the inverse function theorem.

> OR
(ii) State and prove the implicit function theorem.
5.(a)(i) Graph the circle given $\mathrm{by} x^{2}+y^{2}=1$. Using the graphical approach, determine parts of the graph that have inverses and algebraic approach, find invertible formulas and cases converting x to y .

OR
(ii) Suppose that a cup of tea starts out at $98^{\circ} \mathrm{C}$ and that the conference room you are in is at a temperature of $72^{\circ} \mathrm{C}$ and suppose that after three minutes, the tea temperature has dropped to $90^{\circ} \mathrm{C}$. The conference session is to go on for some time. How long will it take for tea to cool down to $80^{\circ} \mathrm{C}$? (5)
(b) (i) Derive D' Alembert's approach toward characterizing solutions of the vibrating string

OR
(ii)Derive the heat equation.

